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Abstract

In this work we propose an alternative solution
to the acoustic wave equation through the rapid
expansion method (REM), but now using the Hermite
and Laguerre polynomials instead of the Chebyshev
polynomials to expand the cosine operator. This new
solution can also be reduced to conventional finite-
difference schemes of second and fourth order when
the time step is taken relatively small. In addition,
this new version of REM allows one to use a larger
time-step than used in conventional finite difference
schemes to march the wavefield in time generating the
stable propagation of seismic waves free of numerical
dispersion.
To test the efficiency of the proposed method,
we apply this new rapid expansion method for
modeling and reverse time migration (RTM) of
synthetic data examples from a complex geological
structure including a salt body. The results were
satisfactory and with few dispersion and show good
imaging of complex structures, thus demonstrating
the effectiveness and applicability of the method.

Introduction

Finite difference (FD) is well known and a popular
numerical solution for the wave equation. It has been
common to use FD approximation for both the time and
spatial evolution of wavefields. Although easy to solve,
it is only conditionally stable which imposes a limit on
the marching time step size. On the other hand, all the
finite difference methods suffer from numerical dispersion
problems. Various alternative approaches have been
proposed in the geophysical literature to archieve stability
and dispersion-free extrapolation of scalar waves in
heterogeneous media for large time steps (Du et al.,
2014). These methods are all based on mixed-domain
space/wavenumber time extrapolation.
In the two-step extrapolation equation, the cosine term can
be expanded either by a Taylor series or by orthogonal
polynomials such as Chebyshev polynomials. The
Chebyshev approximation for time extrapolation was
introduced by Tal-Ezer (1986) and Tal-Ezer et al. (1987)
and it is the basis for the rapid expansion method (REM)
used by Kosloff et al. (1989); Pestana and Stoffa (2009,
2010) and Stoffa and Pestana (2009). The REM was
initially developed for nonrecursive evaluation of wavefields
and recently proposed by Pestana and Stoffa (2010) to be

used as recursive extrapolators.
The wave-equation solution based on the REM using
Chebyshev polynomial approximation is more accurate
than the usual finite difference schemes. It also provides
the base for a recursive solution which, in comparison
with finite difference schemes, is more accurate, thus
introducing less errors and leading to a stabler numerical
method. Therefore, this kind of approach allows us to
march in time with larger time steps.
Since the Chebyshev polynomial is the most frequently
used orthogonal polynomial in most numerical
approximation theory, other kinds of orthogonal
polynomials should also be applicable for time evolution
problems based on the wave equation solution. The
argument of the Chebyshev polynomial is bounded to the
interval [−1;1], a feature that is not present in the case
of Hermite and Laguerre polynomials. So, expansion in
terms of these kinds of orthogonal polynomials may have
some advantages and we will explore the efficiency and
accuracy of the two-step wave equation solution based on
these orthogonal polynomials.
In this paper we construct the approximation of the cosine
operator using the Hermite and Laguerre polynomials
and found that these orthogonal polynomials do have the
required properties. Unlike the REM, it does not suffer from
numerical stability or numerical dispersion. Therefore, we
can explore it to design a cost-effective and high quality
method for modeling and migration of seismic data.

Theory

We consider the following acoustic wave equation:

∂ 2u(x, t)
∂ t2 +L2u(x, t) = f (x, t) (1)

where −L2 = c2(x)∇2, v(x) is the velocity of propagation,
x = (x,y,z) is the position vector and ∇2 =

(
∂ 2

∂x2 +
∂ 2

∂y2 +
∂ 2

∂ z2

)
is the Laplacian operator in Cartesian coordinates and
f (x, t) is the source term.

The approach that we use to solve equation 1 is called
variations of parameters (VOP). Thus, the general solution
of u(x, t) to equation (1) on [0, t] is written as:

P(x, t) = P0 cos(Lt)+
Ṗ0

L
sin(Lt)+

1
L

∫ t

0
f (x,s)sin[L(t− s)]ds

(2)
where P(x, t = 0) = P0 and ∂P(x,t)

∂ t |t=0= Ṗ0.

Equation 2 is the fundamental equation from which we
derive the integration procedure. Now, if equation 2 is
reevaluated using the intervals [t, t +∆t] and [t, t −∆t] and
by adding them and evaluating the resulting integral, we
obtain the following complete solution of 1, including the
source term, which is given by:

P(x, t +∆t)+P(x, t−∆t) = 2cos(L∆t)P(x, t)+S(x, t±∆t) (3)
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where S(x, t±∆t) = ∆t2

2 [ f (x, t +∆t)+ f (x, t−∆t)].

Rapid Expansion Method

Now following Kosloff et al. (1989) and based on the
expansion method presented by Tal-Ezer et al. (1987) , the
cosine function can be expanded in the following form:

cos(L∆t) =
∞

∑
k=0

C2kJ2k(∆tR)Q2k

(
iL
R

)
, (4)

where C2k = 1 for k = 0 and C2k = 2 for k > 0, J2k represents
the Bessel function of order 2k and Q2k(w) are the modified
Chebyshev polynomials. The term R is a scalar larger than
the range eigenvalues of −L2 and it is the same R which
appeared in the original Tal-Ezer method (Tal-Ezer et al.,
1987).

Since 4 contains only even polynomials, it is more
convenient to use the relation,

Qk+2(w) = 2(1+2w2)Qk(w)−Qk−2(w). (5)

The recursion is initiated by

Q0(w) = 1 and Q2(w) = 1+2w2, (6)

where we have replaced w by iL/R.

For 2D wave propagation, and considering the constant
velocity case, the value of R is given by R =

πc
√

(1/∆x2)+(1/∆z2). But, in general, c should be
replaced by cmax, the highest velocity in the grid, and ∆x, ∆y
and ∆z are the spatial grid spacing (Tal-Ezer et al., 1987).

The sum in 4 is known to converge exponentially for k >∆tR
and, therefore, the summation can be safely truncated with
a k value slightly greater than ∆tR.

Hermite polynomial expansion

In order to obtain the expansion in terms of Hermite
polynomials, we start from its generating function (Arfken,
1985)

e−s2+2sx =
∞

∑
k=0

sk

k!
Hk(x), (7)

where Hk denotes the Hermite polynomials of order k. The
exponential operator can be rearranged as

e−iL∆t = e−(∆t/2λ )2
e−(−i∆t/2λ )2+2λL(−i∆t/2λ ), (8)

here an arbitrary parameter λ was introduced for
convenience of later use. By comparing 8 with 7 by setting
s=−i∆t/2λ and x= λL, we immediately obtain the Hermite
expansion for the exponential operator as:

e−iL∆t = e−(∆t/2λ )2
∞

∑
k=0

(−i)k

k!

(
∆t
2λ

)k
Hk(λL). (9)

About the convergence of this series, it is easily shown that
when k > (e∆t/2λ ) the term (1/k!)(∆t/2λ )k will behave like
e−kln[k/e(2λ/t)], which means that the expansion converges
exponentially (Hu, 1999).

When k is an odd number, Hk(−x) = −Hk(x). Thus, every
odd term will be cancelled, and we get the following
expansion

cos(L∆t) = e−(∆t/2λ )2
∞

∑
k=0

(−1)k

2k!

(
∆t
2λ

)2k
H2k(λL). (10)

The series of Hermite polynomials of λL can be calculated
by the following recursion relation:

Hk+1(λL) = 2λLHk(λL) − 2kHk−1(λL), (11)

with the initial values H0(λL) = 1 and H1(λL) = 2λL.

Using the solution given by 3, and the Hermite expansion
for cos(L∆t), we have that:

P(x, t +∆t) + P(x, t−∆t) = 2
[
e−(∆t/2λ )2

(12)

∑
∞
k=0

(−1)k

2k!

(
∆t
2λ

)2k
H2k(λL)

]
P(x, t)+S(x, t±∆t)

Now we need a recursion for Hk with only even terms.
Using recursion 11, we get

Hk+2(x) = (4x2−4k−2) Hk(x) − 4k(k−1) Hk−2(x), (13)

for k > 2, with the initial values H0 = 1 and H2 = 4x2−2.

If we consider in the Hermite expansion only the first two
terms, we get the following result:

P(x, t +∆t)+P(x, t−∆t) = 2Z
[

1+ 1
2

(
∆t
2λ

)2

(4(λL)2−2)
]

P(x, t) + S(x, t±∆t) (14)

where Z = e−(∆t/2λ )2
or Z = 1 − (∆t/2λ )2 +

(∆t/2λ )4

2! + ...
(series Taylor approximation).

For a sufficient small ∆t, we have that (∆t/2λ )2 ≈ 0 and
Z = 1, resulting in:

P(x, t +∆t)+P(x, t−∆t) = 2P(x, t)−∆t2L2P(x, t)+S(x, t±∆t)
(15)

That is the scheme obtained for the wave equation when it
is solved by the pseudo-spectral method (2nd order FD in
time and Fourier method for spatial derivatives).

Expansion using Laguerre polynomials

The Laguerre polynomials are orthogonal, as are the
Hermite, with respect to the weight function xme−x. Now
further using the following relation between Hermite and
Laguerre polynomials,

H2k(x) = (−1)k 22k k! L
−1/2
k (x2), (16)

we obtain the following result to cos(L∆t), as

cos(L∆t) = e−(∆t/2λ )2
∑

∞
k=0

(−1)k

2k!

(
∆t
2λ

)2k
H2k(λL)

= ∑
∞
k=0 Ck (λ∆t) φk(λ

2L2); (17)

where

Ck(λ∆t) = e−(∆t/2λ )2 k! 22k

2k!

(
∆t
2λ

)2k
. (18)

The expansion coefficient Ck(λ∆t) can be calculated
through its recurrence relation:

Ck(λ∆t) =
[

2
2k−1

](
∆t
2λ

)2
Ck−1(λ∆t) (19)
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and,
φk(λ

2L2) = L
−1/2
k (λ 2L2) (20)

which satisfy the recurrence relation:

φk(x
2) =

(2k−3/2− x2)

k
φk−1(x

2)− (k−3/2)
k

φk−2(x
2) (21)

with the initial values:

φ0(x2) = 1 and φ1(x2) = (1/2− x2)

where we have replacede x by (λL)

Now, using the wave equation solution 3 and replacing the
cos(L∆t) by the new approximation, we can produce the
following recursive solution:

P(x, t +∆t)+P(x, t−∆t) = 2∑
∞
k=0 Ck(λ∆t)φk(λ

2L2) P(x, t)
+ S(x, t±∆t) (22)

Using only two recursion terms (2nd order approximation
in time), we obtain:

P(x, t +∆t)+P(x, t−∆t) = 2αP(x, t)−β∆t2L2P(x, t)
+ S(x, t±∆t) (23)

where α =C0[1+(∆t/2λ )2] and β =C0 = e−(∆t/2λ )2
.

Numerical Results

To compare the different series expansions to the cosine
function designed in the paper, in Figure 1, we have the
expansion of cos(φ) using the Taylor series, Chebyshev
polynomials and by the Laguerre polynomials. The φ

is defined as φ = L∆t and φmax = R∆t, where R was
determined previously. We consider the 2-D case and
∆x = ∆z = 0.012 km, cmax = 4,480 km/s, ∆t = 2 ms, then
φmax = 3.31 rad.
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s(φ

), 
h(

φ)
, f
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), 
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φ)
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Using 4 terms of each expansion
cos(φ)
h(φ) − Exp.Taylor
f(φ) − Exp.Laguerre
g(φ) − Exp.Chebyshev

Figure 1: Plot with the results of the expansions of the
cosine function using 4 terms by: Taylor series, Chebyshev
and Laguerre polynomial expansions.

In Figure 1 we can see that the Laguerre and Chebyshev
Polynomial expansions using four terms show a good
match of the cos(φ) function in the interval [0,φmax]. In the
Laguerre polynomial expansion, open parameter λ , with
λ = 2/R, was the one that provides the best match. The
Taylor series expansion, using also 4 terms, did not show
a good match mainly for the higher angles.

Seismic Modeling

The synthetic velocity model, Figure 2, which represents
a complex velocity field with high contrast of velocity and
with a salt body, is the first example used to demonstrate
the applicability of the seismic modeling method we
have proposed using the recursive REM with Laguerre
polynomial expansion.

The salt velocity model (Figure 2) has 338 horizontal
samples, 210 vertical samples, and for the modeling results
shown here we used a time stepping of 0.002 s. The spatial
sampling in the velocity grid is 10 m in both directions. A
point source, Ricker wavelet, with maximum frequency of
25 Hz, is injected at the coordinates 3000 m in horizontal
and 20 m in vertical.
The snapshots were generated at the times 0.4 s, 0.6 s,
0.8 s and 1 s. For comparison, we applied the traditional
REM which uses the Chebyshev polynomial expansion and
the results are shown in Figure 3. The results obtained
using the Laguerre polynomial expansion are presented in
Figure 5. The corresponding seismograms (common shot
gathers) are shown in Figure 4 and Figure 6, respectively,
where the data was recorded at the depth position of 20 m.

These modeling results, obtained for both cases, using the
Chebyshev and Laguerre polynomial expansions, for all the
snapshots (Figures 3 and 5) and also for both seismograms
(Figures 4 and 6), are results free of dispersion noise
and attest the efficiency and applicability of the Laguerre
polynomial expansion method to approximate the cosine
function as well.

0

1000

2000

3000

4000

De
pth

 (m
)

2000 4000 6000
Distance (m)

Figure 2: P-velocity model for the salt dome model.

Seismic Migration

Despite of high computational requirement, RTM allows
us to migrate reflectors without any dip limitation because
it uses a solution based on the full-wave equation
(McMechan, 1983; Baysal et al., 1983). This feature,
coupled with the inverse propagation over time, instead
of depth, makes it possible to deal in complex areas
with events such as prismatic waves and also with
reflections generated by submarine ascending waves at
interfaces characterized by dip angle higher than 90
degrees (Whitmore, 2006). These characteristics justify
its efficacy in areas with complex geology, such as those
affected by salt tectonic.

The velocity model shown in Figure 7 and its zero-offset
section (Figure 8) were used as input data to the RTM
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algorithm. This model is well known as the SEG-EAGE
model. It represents a salt geological structure with a
strong velocity contrast with the environment where it is
inserted. It has several reflectors and with faults of strong
dip, both above and below the salt body. The salt body acts
as a disperser of the seismic signal. The velocity model
has 1290 horizontal samples, 300 vertical samples and the
zero-offset has 2504 time samples per trace with a time
sampling interval of 0.002 s.

Analysing the migrated results shown on Figures 9, 10 and
11, we can consider that we have achieved a good result in
which all complex structures were well imaged: it shows a
good imaging of the flank, top and bottom of the salt body.
The synclines resulting from deformation caused by salt
dome are well mapped, as well as all its contour and the
anticline. Comparing the migrated results with the velocity
field, we can see that the horizontal line at the bottom of the
salt body was very well imaged. The pos-stack migration
using the RTM proved that the method proposed here is
stable and without dispersion noise. The results presented
here were obtained using 5 recursion terms (Figure 9), 10
terms (Figure 10) and 15 terms (Figure 11).

Conclusions

The cosine operator in the two-step wave-equation solution
is normally approximated by the Taylor series or by
Chebyshev polynomials. In this paper we presented
approximations for the cosine operator using the Hermite
and Laguerre polynomials. For numerical tests, we
implemented the Laguerre polynomial expansion.

The time-stepping evolution of the wave equation using
Laguerre polynomials was tested for seismic modeling and
migration applications. The results show that the new
method can be used satisfactorily for seismic modeling
of complex models with high velocity contrast producing
snapshots and seismograms stable and free of dispersion
noise. The seismic modeling results (snapshots and
seismograms) were compared with the results generated
by the Chebyshev polynomial expansion and the very good
match between the results attests the applicability of the
Laguerre polynomial expansion to approximate the cosine
operator as well.
The Laguerre polynomial expansion was also tested for
reverse time migration (RTM) of seismic data. We applied
it for a pos-stack dataset with a complex geologic structure
including a salt body and we obtained high quality results
where the salt and sub-salt structures were well imaged
using different number of recursion terms.

For the numerical tests presented here, the open
parameter λ was set equal to R/8 and it was the value
which ensured best results for modeling and migration.
In the Laguerre polynomial expansion, the λ is a free
parameter which need to be investigated. More studies is
needed to determine which values of λ should be used to
ensure goods numerical results.
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Figure 3: Snapshots generated from the salt dome model
(Figure 2), using the Chebyshev expansion at time: 0.4 s
(a), 0.6 s (b) 0.8 s (c) and 1 s (d). The source wavelet
injected at xs = 3000 m and zs = 20 m, and time stepping of
2 ms.
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Figure 4: Seismograms generated from the salt dome
model using the Chebyshev expansion with time stepping
of 2 ms.
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Figure 5: Snapshots generated from the salt dome model
using Laguerre expansion at the times: 0.4 s (a), 0.6 s (b)
0.8 s (c) and 1s (d). The source wavelet, injected at xs =
3000 m and zs = 20 m, and time stepping of 2 ms .
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Figure 6: Seismogram generated from the salt dome model
using the Laguerre expansion with time stepping of 2 ms.
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Figure 7: EAGE-SEG velocity model.
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Figure 8: EAGE-SEG zero offset section.
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Figure 9: RTM result of the EAGE-SEG dataset using 5
recursion terms
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Figure 10: RTM result of the EAGE-SEG dataset using 10
recursion terms.
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Figure 11: RTM result of the EAGE-SEG dataset using 15
recursion terms
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